
Brief History of VHDL
The Requirement
The development of VHDL was initiated in 1981 by the United States Department of Defence to 
address the hardware life cycle crisis. The cost of reprocuring electronic hardware as technologies 
became obsolete was reaching crisis point, because the function of the parts was not adequately 
documented, and the various components making up a system were individually verified using a wide 
range of different and incompatible simulation languages and tools. The requirement was for a 
language with a wide range of descriptive capability that would work the same on any simulator and 
was independent of technology or design methodology.
Standardization
The standardization process for VHDL was unique in that the participation and feedback from industry 
was sought at an early stage. A baseline language (version 7.2) was published 2 years before the 
standard so that tool development could begin in earnest in advance of the standard. All rights to the 
language definition were given away by the DoD to the IEEE in order to encourage industry 
acceptance and investment.
ASIC Mandate
DoD Mil Std 454 mandates the supply of a comprehensive VHDL description with every ASIC 
delivered to the DoD. The best way to provide the required level of description is to use VHDL 
throughout the design process.
VHDL 1993
As an IEEE standard, VHDL must undergo a review process every 5 years (or sooner) to ensure its 
ongoing relevance to the industry. The first such revision was completed in September 1993, and this is 
still the most widely supported version of VHDL.



Brief History of VHDL….

VHDL 2000 and VHDL 2002
One of the features that was introduced in VHDL-1993 was shared variables. Unfortunately, it 
wasn't possible to use these in any meaningful way. A working group eventually resolved this by 
proposing the addition of protected types to VHDL. VHDL 2000 Edition is simply VHDL-1993 
with protected types.
VHDL-2002 is a minor revision of VHDL 2000 Edition. There is one significant change, though: 
the rules on using buffer ports are relaxed, which makes these much more useful than hitherto.
VHPI
In 2007, an amendment to VHDL 2002 was created. This introduces the VHDL Procedural 
Interface (VHPI) and also makes a few minor changes to the text of VHDL 2002. Apart from the 
VHPI itself, no new features were added to VHDL.
The VHPI allows tools programmable access to a VHDL model before and during simulation. In 
other words, you can write programs in a language such as C that interact with a VHDL 
simulator.
VHDL 2008
The next revision of VHDL was released in January 2009, and is referred to as "VHDL-2008". F



Summary: History of VHDL

1981 Initiated by US DoD to address hardware 
life-cycle crisis

1983-85 Development of baseline language by 
Intermetrics, IBM and TI

1986 All rights transferred to IEEE

1987 Publication of IEEE Standard

1987 Mil Std 454 requires comprehensive VHDL 
descriptions to be delivered with ASICs

1994 Revised standard (named VHDL 1076-1993)

2000 Revised standard (named VHDL 1076 2000, 
Edition)

2002 Revised standard (named VHDL 1076-2002)

2007 VHDL Procedural Language Application 
Interface standard (VHDL 1076c-2007)

2009 Revised Standard (named VHDL 1076-2008)



Describing a Design

 In VHDL an entity is used to describe a hardware module. An entity can be 
described using,

 Entity declaration

 Architecture

 Configuration

 Package declaration

 Package body

 Let’s see what are these?



Entity Declaration

 Entity Declaration

 It defines the names, input output signals and modes of a hardware module.

 Syntax −
entity entity_name is 
Port declaration; 
end entity_name; 

In Port can be read

Out Port can be written

Inout Port can be read and written

Buffer Port can be read and written, it 
can have only one source.

An entity declaration should start with ‘entity’ and end with ‘end’ keywords. The direction will be input, output or inout.



Architecture −

 Architecture can be described using structural, dataflow, behavioral or mixed style.

 Syntax

 Here, we should specify the entity name for which we are writing the architecture body. The 
architecture statements should be inside the ‘begin’ and ‘énd’ keyword. Architecture declarative 
part may contain variables, constants, or component declaration.

−

architecture architecture_name of entity_name is
architecture_declarative_part; 
begin 
Statements; 
end architecture_name; 



Data Flow Modeling

 In this modeling style, the flow of data through the entity is expressed using 
concurrent (parallel) signal. The concurrent statements in VHDL are WHEN and 
GENERATE.

 Besides them, assignments using only operators (AND, NOT, +, *, sll, etc.) can also 
be used to construct code.

 Finally, a special kind of assignment, called BLOCK, can also be employed in this 
kind of code.

 In concurrent code, the following can be used −

 Operators

 The WHEN statement (WHEN/ELSE or WITH/SELECT/WHEN);

 The GENERATE statement;

 The BLOCK stateme



 SYNTAX
architecture architecture_name of entity_name is
architecture_declarative_part; 
begin 
Statements; 
end architecture_name; 

 EXAMPLE OF DATAFLOW MODEL

 entity andor is

 port(a : in std_logic;b : in std_logic;d : in std_logic;e : in std_logic;

 g : out std_logic);

 end andor;

 architecture andor_a of and_or is

 begin

 g <= (a and b) or (d and e);

 end andor_a;



Behavioral Modeling

 In this modeling style, the behavior of an entity as set of statements is 
executed sequentially in the specified order. Only statements placed inside a 
PROCESS, FUNCTION, or PROCEDURE are sequential.

 PROCESSES, FUNCTIONS, and PROCEDURES are the only sections of code that 
are executed sequentially.

 However, as a whole, any of these blocks is still concurrent with any other 
statements placed outside it.

 One important aspect of behavior code is that it is not limited to sequential 
logic. Indeed, with it, we can build sequential circuits as well as 
combinational circuits.

 The behavior statements are IF, WAIT, CASE, and LOOP. VARIABLES are also 
restricted and they are supposed to be used in sequential code only. VARIABLE 
can never be global, so its value cannot be passed out directly.



 SYNTAX
architecture architecture_name of entity_name is
Begin
Process(sensitivity list)
architecture_declarative_part; 
begin 
Statements; 
end architecture_name; 

 EXAMPLE OF BEHAVIORAL MODEL

 entity andor is

 port(a : in std_logic;b : in std_logic;d : in std_logic;e : in std_logic;

 g : out std_logic);

 end and_or;

 architecture and_or_a of and_or is

 Begin

          process(a,b,d,e,g)

 begin

 g <= (a and b) or (d and e);

 end process;

 end andor_a;



Structural Modeling

 In this modeling, an entity is described as a set of interconnected components. 
A component instantiation statement is a concurrent statement. Therefore, 
the order of these statements is not important. The structural style of 
modeling describes only an interconnection of components (viewed as black 
boxes), without implying any behavior of the components themselves nor of 
the entity that they collectively represent.

 In Structural modeling, architecture body is composed of two parts − the 
declarative part (before the keyword begin) and the statement part (after the 
keyword begin).



 SYNTAX
architecture architecture_name of entity_name is
Component declaration;
begin 
Statements; 
end architecture_name; 

 EXAMPLE OF STRUCTURE MODEL

 entity andor is

 port(a : in std_logic;b : in std_logic;d : in std_logic;e : in std_logic;

 g : out std_logic);

 end and_or;

 architecture and_or_a of and_or is

 Component and2

 Port(in0,in1:in std_logic;out0:out std_logic);

 End component:

 Component or2

 Port(in2,in3:in std_logic;out1:out std_logic);

 End component;

 begin

 g <= (a and b) or (d and e);

 end process;

 end andor_a;



Logic Operation – AND GATE

A B Q

0 0 0

0 1 0

1 0 0

1 1 1

VHDL Code: 
Library ieee; 
use ieee.std_logic_1164.all;
 entity and1 is 
port(A,B:in bit ; Q:out bit); end and1; 
architecture virat of and1 is
 begin
 Q<=A and B; 
end virat; 



Configuration

Used to bind component instances to design entities and collect architectures to make, 
typically, 
a simulatable test bench. One configuration could create a functional simulation while 
another configuration 
could create the complete detailed logic design. 
With an appropriate test bench the results of the two configurations can be compared. 
Note that significant nesting depth can occur on hierarchal designs. 
There is a capability to bind various architectures with instances of components in the 
hierarchy. To avoid nesting depth use a configuration for each architecture
 level and a configuration of configurations. Most VHDL compilation/simulation systems 
allow the top level configuration name to be elaborated and simulated.
 configuration identifier of entity_name is 
[ declarations]
 [ block configuration ,] 
end architecture identifier ; 



Package Declaration

Used to declare types, shared variables, subprograms, etc.
 package identifier is
 [ declarations, see allowed list below ]
 end package identifier ;
 The example is included in the next section, Package Body. The allowed 
declarations are:
 subprogram declaration type declaration subtype declaration constant, 
object declaration signal, object declaration variable, 
object declaration - shared file, object declaration alias declaration 
component declaration attribute declaration attribute specification use 
clause
 group template declaration group declaration Declarations not allowed 
include: subprogram body A package body is unnecessary if no 
subprograms 
or deferred constants are declared in the package declaration. 



Package Body
Used to implement the subprograms declared in the package declaration. 
package body identifier is
 [ declarations, see allowed list below ]
 end package body identifier ; 
package my_pkg is -- sample package declaration
 type small is range 0 to 4096; 
procedure s_inc(A : inout small); 

function s_dec(B : small) return small;
 end package my_pkg;
 package body my_pkg is
 -- corresponding package body procedure s_inc(A : inout small) is begin A := A+1; 
end procedure s_inc; function s_dec(B : small) return small is 
begin return B-1; 
end function s_dec; 
end package body my_pkg;
 The allowed declarations are:
 subprogram declaration subprogram body type declaration subtype declaration constant, object declaration variable, object declaration –
 shared file, object declaration alias declaration use clause group template declaration group declaration 
Declarations not allowed include: signal, object declaration 



Subprograms

There are two kinds of subprograms: procedures and functions. Both procedures and 
functions written in VHDL must have a body and may have declarations.
 Procedures perform sequential computations and return values in global objects or by 
storing values into formal parameters. Functions perform sequential computations and
 return a value as the value of the function. Functions do not change their formal 
parameters. Subprograms may exist as just a procedure body or a function body.
 Subprograms may also have a procedure declarations or a function declaration. When 
subprograms are provided in a package, the subprogram declaration is placed
 in the package declaration and the subprogram body is placed in the package body. 



Procedure Declaration
 A procedure is a subprogram that defines algorithm for computing values or exhibiting behavior. 

Procedure call is a statement.

 Simplified Syntax

 procedure procedure_name ( formal_parameter_list )

 procedure procedure_name ( formal_parameter_list ) is

   procedure_declarations

   begin

     sequential statements

   end procedure procedure_name;

 arameters of the file type have no mode assigned.

 There are three modes available: in, out, and inout. When in mode is declared and object class is not 
defined, then by default it is assumed that the object is a constant. In case of inout and out modes, the 
default class is variable. When a procedure is called, formal parameters are substituted by actual 
parameters. If a formal parameter is a constant, then actual parameter must be an expression. In case of 
formal parameters such as signal, variable and file, the actual parameters must be objects of the same 
class. Example 2 presents several procedure declarations with parameters of different classes and modes.

 A procedure can be declared also without any parameters.



Procedure Body
 Procedure body defines the procedure's algorithm composed of sequential statements. When the 

procedure is called it starts executing the sequence of statements declared inside the procedure 
body.

 The procedure body consists of the subprogram declarative part After the reserved word is and the 
subprogram statement part placed between the reserved words begin and end. The key 
word procedure and the procedure name may optionally follow the end reserved word.

 Declarations of a procedure are local to this declaration and can declare subprogram declarations, 
subprogram bodies, types, subtypes, constants, variables, files, aliases, attribute declarations, 
attribute specifications, use clauses, group templates and group declarations (Example 3).

 A procedure can contain any sequential statements (including wait statements). A wait statement, 
however, cannot be used in procedures which are called from a process with a sensitivity list or from 
within a function. Examples 4 and 5 present two sequential statements specifications.

 PROCEDURE CALL

 A procedure call is a sequential or concurrent statement, depending on where it is used. A sequential 
procedure call is executed whenever control reaches it, while a concurrent procedure call is 
activated whenever any of its parameters of in or inout mode changes its value.

 All actual parameters in a procedure call must be of the same type as formal parameters they 
substitute.



 OVERLOADED PROCEDURES

 The overloaded procedures are procedures with the same name but with different number or different types of formal parameters. The actual 
parameters decide which overloaded procedure will be called (Example 6).

 Examples

 Example 1

 procedure Procedure_1 (variable X, Y: inout Real);

  
The above procedure declaration has two formal parameters: bi-directional variables X and Y of the real type.

 Example 2

 procedure Proc_1 (constant In1: in Integer; variable O1: out Integer);
procedure Proc_2 (signal Sig: inout Bit);

  
Procedure Proc_1 has two formal parameters: the first one is a constant and it is of mode in and of the integer type, the second one is an output 
variable of the integer type.

 Procedure Proc_2 has only one parameter, which is a bi-directional signal of the type BIT.

 Example 3

 procedure Proc_3 (X,Y : inout Integer) is
  type Word_16 is range 0 to 65536;
  subtype Byte is Word_16 range 0 to 255;
  variable Vb1,Vb2,Vb3 : Real;
  constant Pi : Real :=3.14;
  procedure Compute (variable V1, V2: Real) is
  begin
    -- subprogram_statement_part
  end procedure Compute;
begin
    -- subprogram_statement_part
end procedure Proc_3;

  
The example above present different declarations which may appear in the declarative part of a procedure.



 Example 4

 procedure Transcoder_1 (variable Value: inout bit_vector (0 to 7)) is
begin
  case Value is
    when "00000000" => Value:="01010101";
    when "01010101" => Value:="00000000";
    when others => Value:="11111111";
  end case;
end procedure Transcoder_1;

  The procedure Transcoder_1 transforms the value of a single variable, which is therefore a bi-directional parameter.

 Example 5

 procedure Comp_3(In1,R:in real; Step :in integer; W1,W2:out real) is
variable counter: Integer;
begin
  W1 := 1.43 * In1;
  W2 := 1.0;
  L1: for counter in 1 to Step loop
    W2 := W2 * W1;
    exit L1 when W2 > R;
  end loop L1;
  assert ( W2 < R )
    report "Out of range"
      severity Error;
end procedure Comp_3; 



 The Comp_3 procedure calculates two variables of mode out: W1 and W2, both of 
the REAL type. The parameters of mode in: In1 and R constants are of real type 
and Step of the integer type. The W2 variable is calculated inside the loop 
statement. When the value of W2 variable is greater than R, the execution of the 
loop statement is terminated and the error report appears.

 example 6
 procedure Calculate (W1,W2: in Real; signal Out1:inout Integer);

procedure Calculate (W1,W2: in Integer; signal Out1: inout Real);
-- calling of overloaded procedures:
Calculate(23.76, 1.632, Sign1);
Calculate(23, 826, Sign2);

  
The procedure Calculate is an overloaded procedure as the parameters can be of 
different types. Only when the procedure is called the simulator determines which 
version of the procedure should be used, depending on the actual parameters.



Function Declaration
Used to declare the calling and return interface to a function. 
function identifier [ ( formal parameter list ) ] 
return a_type ; 
function random return float ;
 function is_even ( A : integer) return boolean ; 
Formal parameters are separated by semicolons in the formal parameter 
list.
 Each formal parameter is essentially a declaration of an object that is 
local to the function. 
The type definitions used in formal parameters must be visible at the 
place where the function is being declared.
 No semicolon follows the last formal parameter inside the parenthesis. 
Formal parameters may be constants, signals or files. 
The default is constant. Formal parameters have the mode in. Files do 
not have a mode. Note that inout and out are not allowed for functions. 
The default is in . The reserved word function may be preceded by 
nothing, implying pure , pure or impure . A pure function must not 
contain 
a reference to a file object, slice, subelement, shared variable or signal 
with attributes such as 'delayed, 'stable, 'quiet, 'transaction and must not 
be a parent of an impure function. 



Function Body

Used to define the implementation of the function.
 function identifier [ ( formal parameter list ) ] 
return a_type is
 [ declarations, see allowed list below ]
 begin 
sequential statement(s) return some_value; -- of type a_type 
end function identifier ;
 function random return float is variable X : float;
 begin 
-- compute X return X;
 end function random ;
 The function body formal parameter list is defined above in Function Declaration. When a 
function declaration
 is used then the corresponding function body should have exactly the same formal 
parameter list. 
The allowed declarations are: subprogram declaration subprogram body type declaration 
subtype declaration constant,
 object declaration variable, object declaration file, object declaration alias declaration use 
clause group template declaration group declaration
 Declarations not allowed include: signal, object declaration 



Identifiers

 Identifiers are used both as names for VHDL objects, procedures, functions, processes, design 
entities, etc., and as reserved words. There are two classes of identifiers: basic identifiers 
and extended identifiers.

 The basic identifiers are used for naming all named entities in VHDL. They can be of any 
length, provided that the whole identifier is written in one line of code. Reserved words 
cannot be used as basic identifiers (see reserved words for complete list of reserved words). 
Underscores are significant characters in an identifier and basic identifiers may contain 
underscores, but it is not allowed to place an underscore as a first or last character of an 
identifier. Moreover, two underscores side by side are not allowed as well. Underscores are 
significant characters in an identifier.

 The extended identifiers were included in VHDL '93 in order to make the code more 
compatible with tools which make use of extended identifiers. The extended identifiers are 
braced between two backslash characters. They may contain any graphic character (including 
spaces and non-ASCII characters), as well as reserved words. If a backslash is to be used as 
one of the graphic characters of an extended literal, it must be doubled. Upper- and lower-
case letters are distinguished in extended literals.



Important Notes

 A basic identifier must begin with a letter.

 No spaces are allowed in basic identifiers.

 Basic identifiers are not case sensitive, i.e. upper- and lower-case letters are 
considered identical.

 Basic identifiers consist of Latin letters (a..z), underscores ( _ ) and digits 
(0..9). It is not allowed to use any special characters here, including non-
Latin (language-specific) letters.

  



VHDL Data Types

 This is a classification objects/items/data that defines the possible set of 
values which the objects/items/data belonging to that type may assume. 

  E.g. (VHDL) integer, bit, std_logic, std_logic_vector 

  Other languages (float, double, int , char etc)



VHDL Data Types
Every data object in VHDL can hold a value that belongs to a set of values, specified by using a type 
declaration.

A type is a name that has associated with it a set of values and a set of operations. Certain types, and 
operations that can be performed on objects of these types, are predefined in the language.

Eg., INTEGER is a predefined type with the set of values being integers in a specific range provided by the 
VHDL system i.e., from -(231 - 1) to +(231 - 1).

Some of the allowable and frequently used predefined operators are +, for addition, -, for subtraction, /, for 
division, and *, for multiplication.

BOOLEAN is predefined type that has the values FALSE and TRUE, and some of its predefined operators 
are and, or, nor, nand, and not.

The declarations for the predefined types of the language are contained in package STANDARD.

The language also provides the facility to define new types by using type declarations and also to define a set 
of operations on these types by writing functions that return values of this new type.



Four major categories of types exist. They are

1.   Scalar types: Values belonging to these types appear in a sequential order.

2.   Composite types: These are composed of elements of a single type (an array type) or elements of different 
types (a record type).

3.   Access types: These provide access to objects of a given type (via pointers).

4.   File types: These provide access to objects that contain a sequence of values of a given type.



Scalar types

The values belonging to this type are ordered, i.e., relational operators can be used on these values. Eg., BIT is a 
scalar type and the expression '0' < 1' is valid and has the value TRUE.

There are four different kinds of scalar types. They are
1. enumeration,
2. integer,
3. physical,
4. floating point.

Integer types, floating point types, and physical types are classified as numeric types since the values associated 
with these types are numeric.

Enumeration and integer types are called discrete types since these types have discrete values associated with 
them.

Every value belonging to an enumeration type, integer type, or a physical type has a position number associated 
with it. This number is the position of the value in the ordered list of values belonging to that type.



ENUMERATION TYPES

An enumeration type declaration defines a type that has a set of user-defined values consisting of identifiers and character literals.

Eg.,

Type MVL is ('U','0','1','Z);
type MICRO_OP is (LOAD, STORE, ADD, SUB, MUL, DIV);
subtype ARITH_OP is MICRO_OP range ADD to DIV;

MVL is an enumeration type that has the set of ordered values, 'U', '0', '1', and 'Z'.

ARITH_OP is a subtype of the base type MICRO_OP and has a range constraint specified to be from ADD to DIV, i.e., the values ADD, SUB, MUL, and DIV belong to 
the subtype ARITH_OP.

A range constraint can also be specified in an object declaration as shown in the signal declaration for CLOCK; here the value of signal CLOCK is restricted to '0' or 1'.



INTEGER TYPES

An integer type defines a type whose set of values fall within a specified integer range.

Eg.,

type INDEX is range 0 to 15;
type WORD_LENGTH is range 31 downto 0;
subtype DATA_WORD is WORD_LENGTH range 15 downto 0;
type MY_WORD is range 4 to 6;

Values belonging to an integer type are called integer literals. Examples of integer literals are
56349 6E2 0 98_71_28



Physical Types

A physical type contains values that represent measurement of some physical quantity, like time, length, voltage, 
and current. Values of this type are expressed as integer multiples of a base unit.

Eg.,
type CURRENT is range 0 to 1E9
units
nA; -- (base unit) nano-ampere
uA = 1000 nA; -- micro-ampere
mA = 1000 μA; --milli-ampere
Amp = 1000 mA; -- ampere
end units;
subtype FILTER_CURRENT is CURRENT range 10 μA to 5 mA;

CURRENT is defined to be a physical type that contains values from 0nA to 1nA.



COMPOSITE TYPES

A composite type represents a collection of values. There are two composite types: an array type and a record type.

An array type represents a collection of values all belonging to a single type; on the other hand, a record type represents a 
collection of values that may belong to same or different types.

An object belonging to a composite type represents a collection of subobjects, one for each element of the composite type. 
An element of a composite type could have a value belonging to either a scalar type, a composite type, or an access type.

Eg., a composite type may be defined to represent an array of an array of records. This provides the capability of defining 
arbitrarily complex composite types.



 ARRAY TYPES

An object of an array type consists of elements that have the same type.

Eg.,
type ADDRESS_WORD is array (0 to 63) of BIT;
type DATA_WORD is array (7 downto 0) of MVL;
type ROM is array (0 to 125) of DATA_WORD;

ADDRESS_BUS is a one-dimensional array object that consists of 64 
elements of  type BIT.

ROM_ADDR is a one-dimensional array object that consists of 126 
elements, each element being another array object consisting of 8 elements 

of type MVL. Hence an array of arrays is created.



RECORD TYPES

An object of a record type is composed of elements of same or different types.

It is analogous to the record data type in Pascal and the struct declaration in C.

Eg.,
type PIN_TYPE is range 0 to 10;
type MODULE is
record
SIZE: INTEGER range 20 to 200;
CRITICAL_DLY: TIME;
NO_INPUTS: PIN_TYPE:
NO_OUTPUTS: PIN_TYPE;
end record;

Values can be assigned to a record type object using aggregates.



ACCESS TYPES

Values belonging to an access type are pointers to a dynamically allocated object of some other type. They are similar to 
pointers in Pascal and C languages.

Eg.,
-- MODULE is a record type declared in the previous sub-section.
type PTR is access MODULE;
type FIFO is array (0 to 63, 0 to 7) of BIT;
type FIFO_PTR is access FIFO;

PTR is an access type whose values are addresses that point to objects of type MODULE. Every access type may also 
have the value null, which means that it does not point to any object.



File Types

Objects of file types represent files in the host environment, which provide a mechanism by which a VHDL design communicates with the host environment.

Syntax of a file type declaration

type file-type-name Is file of type-name,

The type-name is the type of values contained in the file.

Eg.,
type VECTORS is file of BIT_VECTOR;
type NAMES is file of STRING;

.



File Types

A file of type VECTORS has a sequence of values of type BIT_VECTOR; a file of type NAMES has a sequence of strings as values in it.

A file is declared using a file declaration.

Syntax of a file declaration

file file-name: file-type-name is mode string-expression ',

The string-expression is interpreted by the host environment as the physical name of the file.

The mode of a file, in or out, specifies whether it is an input or an output file, respectively. Input files can only be read while output files can only be 
written to.

Eg.,
file VEC_FILE: VECTORS is in "/usr/home/jb/uart/div.vec";
file OUTPUT: NAMES is out "stdout";

VEC_FILE is declared to be a file that contains a sequence of bit  vectors and it  is an input file.  It  is associated with the fi le 
"/usr/home/jb/uart/div.vec" in the host environment



VHDL  Data objects

 There are four types of data objects in VHDL:

 signals

 variables

 constants

 files

  



Signal

 The signal represents interconnection wires between ports

 it may be declared in the declaration part of

 Packages,entities,architectures,blocks

 The signal declaration is

signal signal_name : signal_type;
 Signal assignment: <= 



Variable

 The variable locally stores temporary data and it is used 
only inside a sequential statement that means

 Process,function,procedures

 The variable is visible only inside processes and 
subprograms in which it is declared. 

 The variable declaration is

variable variable_name : variable_type; 
Variable assignment: :=



Constant

 The constant names specific values to make the model better documented 
and easy to update.

 The constant can be declared in all the declarative VHDL statement,

 sequential

 concurrent

 that means it may be declared in the declaration section of packages, entities, 
architectures, processes, subprograms and blocks

 The constant declaration is

constant constant_name : constant_type := value;



File

 The File type is used to access File on disk.

 It is used only in test bench; in fact File type cannot be implemented in 
hardware.

 In order to use the FILE type you shall include the TextIO package that 
contains all procedures and functions that allow you to read from and write 
to formatted text files.

 Input ASCII files are handled as file of lines, where a line is a string, 
terminated by a carriage return.

 TextIO package declares a type line used to hold

 a line read from an input file

 a line to write to an output file



Operators

 Operators are means for constructing expressions.

 VHDL has a wide set of different operators, which can be divided into groups 
of the same precedence level (priority). The table below lists operators 
grouped according to priority level, highest priority first.

miscellaneous 
operators

** | abs | not

multiplying operators * | / | mod | rem

sign operators + | -

adding operators + | - | &

shift operators sll | srl | sla | sra | rol | ror

relational operators = | /= | < | <= | > | >=

logical operators and | or | nand| nor | xor | 
xnor



Libraries and Packages in VHDL

 Built-in Libraries and Packages.

 In most vhdl programs you have already seen examples of packages and libraries. Here are two:

 library ieee;

 use ieee.std_logic_1164.all;

 use ieee.std_logic_signed.all;

 The packages are "std_logic_1164" and "std_logic_signed" and the library is "ieee". Since the "scope" 
of the library statement extends over the entire file, it is not necessary to repeat that for the 
second package.

 It's instructive to show where the packages are physically located. For Altera Max+2 and Xilinx 
Foundation these locations typically are:

 Altera: ~\maxplus2\vhdl93\ieee\std1164.vhd

 Xilinx: ~\fndtn\synth\lib\packages\ieee\src\std_logic_1164.vhd

 It is thus tempting to come to the conclusion that the "library ieee;" statement indicates the 
"directory" in which the std_logic_1164 package is located.



User Libraries and Packages.

 User libraries and packages are setup very similarly to the built-in ones. However, 
in that case, the user is responsible for the directory structure, the contents of 
the files, etc. Note that the user must then also set up the pointer to the package. 
The following shows a complete example of this arrangement. There are two ways 
to do this: 1) with the "work" directory; 2) with a user library.

 With the "work" library (Max+2-specific)

 First we define the "work" library . This is the pointer to the working directory, i.e. 
where all the design files are kept and the software "knows" which one that is, as 
it is set up by the project definition. Thus if the user were to put a .vhd file, 
containing a package, in the current working directory, the statement referencing 
that package would be:

 library work; -- not needed, but OK to include.

 work.usr_package_name.all;



SECTION- B



VHDL Process Statement

 A process statement is concurrent statement itself

 The VHDL process syntax contains:

 sensitivity list

 declarative part

 sequential statement section

 The process statement is very similar to the classical programming 
language. The code inside the process statement is executed 
sequentially. The process statement is declared in the concurrent 
section of the architecture, so two different processes are executed 
concurrently.

 The declaration process statement is

process_label : process(sensitivity_list)
 -- declarative part
 begin 
-- sequential statement

 end process process_label; 



 The process label is optional, you can avoid using the label. Labeling all 
process you use, the code will be clear and it will be simple to arrange the 
simulation environment.

 We will address the process statement in the next lessons. Here there is a 
simple example of the and_or2 entity implemented with a process.

entity and_or is
 port( a: in std_logic; b: in 
std_logic; d: in std_logic; e: in 
std_logic; g : out std_logic);
 end and_or; 
architecture and_or_a of and_or is
 -- declarative part: empty
 begin
 process_and_or : process(a,b,d,e)
 -- declarative part: empty 
begin g <= (a and b) or (d and e);
 end process process_and_or; 
end and_or_a; 



VHDL Sequential Statements
These statements are for use in Processes, Procedures and Functions. The signal assignment 
statement has unique properties when used sequentially. 

These Sequential Statements are

•wait statement
•assertion statement
•report statement
•signal assignment statement
•variable assignment statement
•procedure call statement
•if statement
•case statement
•loop statement
•next statement
•exit statement
•return statement
•null statement



wait statement

Cause execution of sequential statements to wait.
 [ label: ] wait [ sensitivity clause ] [ condition clause ] ;
 wait for 10 ns; -- timeout clause, specific time delay. 
wait until clk='1'; -- condition clause, Boolean condition 
wait until A>B and S1 or S2; -- condition clause, Boolean condition 
wait on sig1, sig2; -- sensitivity clause, any event on any -- signal terminates wait 



assertion statement

Used for internal consistency check or error message generation. 
[ label: ] assert boolean_condition [ report string ] [ severity name ] ; 
assert a=(b or c); assert j<i report "internal error, tell someone"; 
assert clk='1' report "clock not up" severity WARNING; 
predefined severity names are: NOTE, WARNING, ERROR, FAILURE default severity for assert 
is ERROR 



report statement

Used to output messages.
[ label: ] report string [ severity name ] ;
 report "finished pass1"; -- default severity name is

 NOTE report "Inconsistent data." severity FAILURE; 



signal assignment statement

The signal assignment statement is typically considered a concurrent statement rather than a sequential 
statement. 
It can be used as a sequential statement but has the side effect of obeying the general rules for when the target 
actually gets updated. 
In particular, a signal can not be declared within a process or subprogram but must be declared is some other 
appropriate scope. 
Thus the target is updated in the scope where the target is declared when the sequential code reaches its end or 
encounters a 'wait' or other event that triggers the update.
 here value is assigned to signal using symlole <=,when it is used in data flow model then it is concurrent in 
naturs and
 when used in behavioral model then sequential in nature

Examples
sig1 <= sig2;
 Sig <= Sa and Sb or Sc nand Sd nor Se xor Sf xnor Sg;
 sig1 <= sig2 after 10 ns; 



variable assignment statement

Assign the value of an expression to a target variable.
 [ label: ] target := expression ; 
  A := -B + C * D / E mod F rem G abs H;
 Sig := Sa and Sb or Sc nand Sd nor Se xor Sf xnor Sg; 



procedure call statement

Call a procedure.
 [ label: ] procedure-name [ ( actual parameters ) ] ; 
do_it; -- no actual parameters 
compute(stuff, A=>a, B=>c+d); -- positional association first,
 -- then named association of 
-- formal parameters to actual parameters 



if statement
Conditional structure. [ label: ]
 if condition1 then sequence-of-statements
 elsif condition2 then \_ optional sequence-of-statements / 
elsif condition3 then \_ optional sequence-of-statements /
 ... else \_ optional sequence-of-statements / end if [ label ] ;
if a=b then
 c:=a; 
elsif b<c then
 d:=b;
 b:=c; 
else 
do_it;
 end if; 



case statement

Execute one specific case of an expression equal to a choice. 
The choices must be constants of the same discrete type as the expression.
 [ label: ] case expression is 
when choice1 => sequence-of-statements
 when choice2 => \_ optional sequence-of-statements / ...

 when others => \_ optional if all choices covered sequence-of-statements / 
end case [ label ] ; 
Example
case my_val is
 when 1 => a:=b; 
when 3 => c:=d; 
when others => null; 
end case; 



loop statement
Three kinds of iteration statements.
1)Loop;
2)For loop;
3)While loop; 
Syntax:-
[ label: ] loop sequence-of-statements -- use exit statement to get out 
end loop [ label ] ; 
[ label: ]
 for variable in range loop 
sequence-of-statements;
 end loop [ label ] ;

 [ label: ] while condition loop 
sequence-of-statements ;
end loop [ label ] ; 
loop input_something;
 exit when end_file;
 end loop;
Example
 for I in 1 to 10 loop 
AA(I) := 0; 
end loop; 
while not end_file loop
 input_something;
 end loop; 
all kinds of the loops may contain the 'next' and 'exit' statements. 



next statement

A statement that may be used in a loop to cause the next iteration.
 [ label: ] next [ label2 ] [ when condition ] ; 
next; 
next outer_loop; 
next when A>B; 
next this_loop when C=D or done; -- done is a Boolean variable 



exit statement
A statement that may be used in a loop to immediately exit the 
loop.
 [ label: ] exit [ label2 ] [ when condition ] ;
 exit;
 exit outer_loop; 
exit when A>B; 
exit this_loop when C=D or done; -- done is a Boolean variable 



return statement

Required statement in a function, optional in a procedure.
 [ label: ] return [ expression ] ; 
return; -- from somewhere in a procedure
 return a+b; -- returned value in a function 



null statement

Used when a statement is needed but there is nothing to do. 
[ label: ] null ;
 null; 



EXAMPLE

process 

variable count: unsigned (7 downto 0);
 begin 

wait until clk = '1';

 if reset = '1' then count := "00000000"; 

else 

count := count + 1;

 end if; 

result <= count; 
end process; 



VHDL Generics
 The RAMs are similar. Have the same interface in terms of signal but different access time 

address and BUS width. In this case, there is no need to write twice the same module. It 
should be possible to parameterize the component during the instantiation. In order to 
implement parameterization of an entity VHDL introduce the generic clause.

 In the entity declaration, all the values that have to be customized can be passed 
using generic clause.

 In the component instantiation, the generic map statement can map the new values in the 
component.

 You should notice that in the entity declaration the generic parameters can have a default 
values.

entity RAM is 
generic( data_width : integer := 64; addr_width : integer := 12; Taa : 
time := 50; Toe : time := 40);
 port( oeb, wrb, csb : in std_logic; data : inout 
std_logic_vector(data_width-1 downto 0);

 addr : in std_logic_vector(addr_width-1 downto 0)); end RAM; 



VHDL Concurrent Conditional Assignment

 The Conditional Signal Assignment statement is concurrent because 

 it is assigned in the concurrent section of the architecture. It is possible 
to

  implement the same code in a sequential version, as we will see next.

 The conditional signal assignment statement is a process that assigns 
values to a signal.

 It is a concurrent statement; this means that you must use it only in 
concurrent code sections.

 The statement that performs the same operation in a sequential 
environment is the “if” statement.

 The syntax for a conditional signal assignment statement is:

 a <= b when c=’1’ else d; 



Concurrent Conditional Signal 
Assignment

 This example extends the previous one. This is a 4-way mux, implemented as 
concurrent code.

 The architecture declarative section is empty. As you can notice, we don’t 
care about how the mux is implemented.

 In this moment we don’t’ talk about logic gate, and or nand ect, we are 
describing the behavior of circuit using a high level description.



Concurrent Conditional Signal Assignment

 This example is the same 4-way mux as the previous one, in which we used a 
different syntax to implement the selector. In this case, we have introduced 
the statement “with select”.

 In the architecture declarative section, we declared a signal “sel” of 
type integer used to address the mux. The signal “sel” is coded as binary to 
integer.

 The statement “with select” allows compacting the syntax of the mux code.

 Vhdl code given below 



 entity mux4_select is

 port(

 a : in bit;

 b : in bit;

 c : in bit;

 d : in bit;

 s0 : in bit;

 s1 : in bit;

 e : out bit);

 end mux4_select;

 architecture mux4_select_a of mux4_select is

 signal sel : integer;

 begin

 sel <= 0 when (s1='0' and s0='0') else

 1 when (s1='0' and s0='1') else

 2 when (s1='1' and s0='0') else

 3;

 with sel select

 e <= a when 0,

 b when 1,

 c when 2,

 d when others;

 end mux4_select_a;



 entity mux4 is

 port(

 a : in bit;

 b : in bit;

 c : in bit;

 d : in bit;

 s0 : in bit;

 s1 : in bit;

 e : out bit);

 end mux4;

 architecture mux4_a of mux4 is

 -- declarative part: empty

 begin

 e <= a when (s1='0' and s0='0') else

 b when (s1='0' and s0='1') else

 c when (s1='1' and s0='0') else

 d;

 end mux4_a;



SECTION- C



VHDL code for all logic gates
using data flow modeling

entity ALLGATES_SOURCE is
 Port ( A,B : in  STD_LOGIC; P, Q, R, S, T, U, V : out  STD_LOGIC); 
end ALLGATES_SOURCE;
 architecture dataflow of ALLGATES_SOURCE is
 begin 

     P  <= A and B;
    Q <= A nand B; 
    R  <= A or B; 
    S <= A nor B;
    T <= not A; 
    U <= A xor B; 
     V <= A xnor B; 
  end dataflow;  



VHDL code for full adder
using structure modeling



Vhdl code for full adder
library IEEE;
 use IEEE.STD_LOGIC_1164.ALL;
 use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity FAdder is
 Port ( FA, FB, FC : in STD_LOGIC; FS, FCA : out 
STD_LOGIC); 
end FAdder; 
architecture structural of FAdder is 
component HA is 
Port ( A,B : in STD_LOGIC; S,C : out STD_LOGIC); 
end component;
 component ORGATE is 
Port ( X,Y: in STD_LOGIC; Z: out STD_LOGIC); 

end component;
 SIGNAL S0,S1,S2:STD_LOGIC;
 begin
 U1:HA PORT MAP(A=>FA,B=>FB,S=>S0,C=>S1);
 U2:HA PORT MAP(A=>S0,B=>FC,S=>FS,C=>S2);
 U3:ORGATE PORT MAP(X=>S2,Y=>S1,Z=>FCA);
 end structural; 



VHDL code for half adder
using data flow modeling

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL;
 use IEEE.STD_LOGIC_UNSIGNED.ALL; 
entity HA is Port ( A,B : in  STD_LOGIC; S,C : out  STD_LOGIC);
 end HA; 
architecture dataflow of HA is
 begin 
S <= A XOR B;
 C <= A AND B;
 end dataflow; 



 VHDL Code for 4:1 Mux:

 library IEEE;

 use IEEE.STD_LOGIC_1164.all;

 entity mux_4to1 is

 port(A,B,C,D : in STD_LOGIC;

 S0,S1: in STD_LOGIC;Z: out STD_LOGIC);

 end mux_4to1;

 architecture bhv of mux_4to1 is

 begin

 process (A,B,C,D,S0,S1) is

 begin

 if (S0 ='0' and S1 = '0') then

 Z <= A;

 elsif (S0 ='1' and S1 = '0') then

 Z <= B;

 elsif (S0 ='0' and S1 = '1') then

 Z <= C;

 else

 Z <= D;

 end if;

 end process;

 end bhv;



 4:1 MUX USING CONDITIONAL SIGNAL ASSIGNMENT STATEMENT and select signal 
assignment 

 library IEEE;
 use IEEE.STD_LOGIC_1164.all;
 entity mux4_select is
 port(a : in bit;b : in bit;c : in bit;d : in bit;s0 : in bit;s1 : in bit; e : out bit);
 end mux4_select;
 architecture mux4_select_a of mux4_select is
 signal sel : integer;
 begin
 sel <= 0 when (s1='0' and s0='0') else
            1 when (s1='0' and s0='1') else
            2 when (s1='1' and s0='0') else
            3;
 with sel select
 e <= a when 0,
 b when 1,
 c when 2,
 d when others;
 end mux4_select_a;



 4:1 MUX USING CONDITIONAL SIGNAL ASSIGNMENT STATEMENT entity mux4 is

 port(

 a : in bit;

 b : in bit;

 c : in bit;

 d : in bit;

 s0 : in bit;

 s1 : in bit;

 e : out bit);

 end mux4;

 architecture mux4_a of mux4 is

 -- declarative part: empty

 begin

 e <= a when (s1='0' and s0='0') else

 b when (s1='0' and s0='1') else

 c when (s1='1' and s0='0') else

 d;

 end mux4_a;



 VHDL Code for 1:4 Demux:
 library IEEE;

 use IEEE.STD_LOGIC_1164.all;

 entity demux_1to4 is

 port(

 F : in STD_LOGIC;

 S0,S1: in STD_LOGIC;

 A,B,C,D: out STD_LOGIC

 );

 end demux_1to4;

 architecture bhv of demux_1to4 is

 begin

 process (F,S0,S1) is

 begin

 if (S0 ='0' and S1 = '0') then

 A <= F;

 elsif (S0 ='1' and S1 = '0') then

 B <= F;

 elsif (S0 ='0' and S1 = '1') then

 C <= F;

 else

 D <= F;

 end if;

 end process;

 end bhv;




VHDL CODE FOR 4:2 ENCODER

library IEEE; use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL;
 entity ENCODER_SOURCE is   
 Port ( I : in  STD_LOGIC_VECTOR (3 downto 0); 
        
  Y : out STD_LOGIC_VECTOR (1 downto 0)); end 
ENCODER_SOURCE; 
architecture Behavioral of ENCODER_SOURCE is
 begin 
process (I) 
begin 
case I is 
when "0001" => Y <= "00" ;
 when "0010" => Y <= "01" ; 
when "0100" => Y <= "10" ;
 when others => Y <= "11" ; 
end case; end process; end Behavioral; 



VHDL CODE FOR 2:4 DECODER

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL;
 entity DECODER_SOURCE is   
 Port ( Y : OUT  STD_LOGIC_VECTOR (3 downto 0);         
  I : IN STD_LOGIC_VECTOR (1 downto 0)); 
end DECODER_SOURCE; 
architecture Behavioral of DECODER_SOURCE is 
begin 
process (Y) 
begin 
case 1 is
 when "00" => Y <= "0001" ;
 when "01" => Y <= "0010" ; 
when "10" => Y <= “0100" ;
 when others => Y <= "1000" ; 
end case; 
end process;
 end Behavioral; 



BCTO 7 SEGMENT DISPLAYD 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL;
 entity BCD_7 is   
 Port ( LED : OUT  STD_LOGIC_VECTOR (6 downto 0);         
  LED_BCD : IN STD_LOGIC_VECTOR (3 downto 0)); 
end BCD_7; 
architecture Behavioral of BCD_7 is 
begin 
process(LED_BCD) 
begin case LED_BCD is
 when "0000" => LED_out <= "0000001"; -- "0“
 when "0001" => LED_out <= "1001111"; -- "1" 
when "0010" => LED_out <= "0010010"; -- "2" 
when "0011" => LED_out <= "0000110"; -- "3" 
when "0100" => LED_out <= "1001100"; -- "4" 
when "0101" => LED_out <= "0100100"; -- "5“
 when "0110" => LED_out <= "0100000"; -- "6" 
when "0111" => LED_out <= "0001111"; -- "7" 
when "1000" => LED_out <= "0000000"; -- "8" 
when "1001" => LED_out <= "0000100"; -- "9" 
when "1010" => LED_out <= "0000010"; -- a 
when "1011" => LED_out <= "1100000"; -- b 
when "1100" => LED_out <= "0110001"; -- C 
when "1101" => LED_out <= "1000010"; -- d 
when "1110" => LED_out <= "0110000"; -- E 
when "1111" => LED_out <= "0111000"; -- F 
end case; 
end process; 
end Behavioral



Comparator circuit

 A comparator is a combinational logic 
circuit that compares two inputs and gives 
an output that indicates the relationship 
between them. There are three outputs.

 An output that indicates if number A is 
greater than number B.

 An output that indicates if it’s smaller.

 And finally, an output that indicates if the 
two numbers are equal.

 Let’s take a look at its logic circuit for 
some clarity.



VHDL code for comparator using behavioral 
method

library IEEE; 
use IEEE.STD_LOGIC_1164.ALL;
 use IEEE.STD_LOGIC_ARITH.ALL;
 use IEEE.STD_LOGIC_UNSIGNED.ALL; 
entity COMPARATOR_SOURCE is   
  Port ( A : in  STD_LOGIC_VECTOR (1 downto 0);           
 G,L,E : out  STD_LOGIC); 
end COMPARATOR_SOURCE;
 architecture Behavioral of COMPARATOR_SOURCE is 
Begin
 process (A)
 begin 
G <= '0';
 L <= '0';
 E <= '0'; 
case A is
 when (A(0)<=A(1)) => E <= '1'; 
when "01" => L <= '1';
 when others => G <= '1'; 
end case; 
end process; 
end Behavioral; 

A B A>B A<B A=B

0 0 0 0 1

0 1 0 1 0

1 0 1 0 0

1 1 0 0 1

Truth table for 1-bit comparator



VHDL code for Parallel In Parallel Out Shift 
Register

library ieee;
 use ieee.std_logic_1164.all;
 entity pipo is port( clk : in std_logic;
 D: in std_logic_vector(3 downto 0);
 Q: out std_logic_vector(3 downto 0) ); 
end pipo;
 architecture arch of pipo is 
begin process (clk)
 begin
 if (CLK'event and CLK='1') then
 Q <= D;
 end if;
 end process;
 end arch; 

For parallel in – parallel out shift 
registers, all data bits appear on the 
parallel outputs immediately 
following the simultaneous entry of 
the data bits. This code is a four-bit 
parallel in – parallel out shift 
register constructed by D flip-flops.



Serial In – Parallel Out Shift Registers

For Serial in – parallel out shift registers, all data bits appear on the parallel outputs 
following the data bits enters sequentially through each flipflop. 
The following code is a four-bit Serial in – parallel out shift register constructed by D flip-flops.
library ieee;
 use ieee.std_logic_1164.all
entity sipo is 
port( clk, clear : in std_logic; Input_Data: in std_logic; Q: out std_logic_vector(3 downto 0) ); 
end sipo;
 architecture arch of sipo is
 begin process (clk)
 begin
 if clear = '1' then
 Q <= "0000"; 
elsif (CLK'event and CLK='1') then
 Q(3 downto 1) <= Q(2 downto 0); 
Q(0) <= Input_Data; 
end if;
 end process; 
end arch; 



VHDL Code for Gray code to Binary conversion:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

entity gray2bin is
port(   
G : in std_logic_vector(3 downto 
0);    --gray code input
        
bin : out std_logic_vector(3 downto 
0)  --binary output
        );
end gray2bin;

architecture gate_level of gray2bin 
is 

begin

--xor gates.
bin(3) <= G(3);
bin(2) <= G(3) xor G(2);
bin(1) <= G(3) xor G(2) xor G(1);
bin(0) <= G(3) xor G(2) xor G(1) xo
r G(0);

end;



VHDL Code for a D Flip Flop
 Library ieee; 

 use ieee.std_logic_1164.all;  

 entity dflip is 

    port(d,clk:in bit; q,qbar:out bit); 

 end dflip; 

  

 architecture virat of dflip is 

 begin 

   q<=d when (ckl=‘1’ and clk’event)else

         ‘0’;

         qbar<= not d;

 end virat;



VHDL Code for a T Flip Flop
 library IEEE; 
 use IEEE.STD_LOGIC_1164.all;  

 entity Toggle_flip_flop is 
    port( 

       t : in STD_LOGIC; 
       clk : in STD_LOGIC; 
       reset : in STD_LOGIC; 
       Q : out STD_LOGIC
    ); 
 end Toggle_flip_flop;  

    

architecture virat of Toggle_flip_flop is 
begin 
    process (t,clk,reset) 
   variable temp : std_logic ; 
 
begin 
      if (reset = '1') then 
         Q : = '0'; 
      elsif (clk=‘1’and clk’event) then 
          
            temp : = not t;        
         end if; 
     
      Q < = temp; 
   end process tff; 
end virat; 



VHDL Code for a 4 - bit Up Counter
 library IEEE; 

 use ieee.std_logic_1164.all; 

 use ieee.std_logic_unsigned.all;

   

 entity counter is 

    port(Clock, CLR : in std_logic; 

       Q : out std_logic_vector(3 downto 0)

    ); 

 end counter;  

 architecture virat of counter is 

    signal tmp: std_logic_vector(3 downto 0); 

 begin 

    process (Clock, CLR) 

    

    begin 

       if (CLR = '1') then 

          tmp < = "0000"; 

       elsif (Clock'event and Clock = '1') then 

          temp <= tmp + 1; 

       end if; 

    end process; 

    Q <= tmp; 

 end virat;



VHDL Code for a 4-bit Down Counter
 library ieee; 

 use ieee.std_logic_1164.all; 

 use ieee.std_logic_unsigned.all;

   

 entity dcounter is 

    port(Clock, CLR : in std_logic; 

       Q : out std_logic_vector(3 downto 0)); 

 end dcounter; 

  

 architecture virat of dcounter is 

    signal tmp: std_logic_vector(3 downto 0); 

 begin 

    process (Clock, CLR) 

    begin 

       if (CLR = '1') then 

          tmp <= "1111"; 

       elsif (Clock'event and Clock = '1') then 

          tmp <= tmp - 1; 

       end if; 

    end process; 

    Q <= tmp; 

 end virat;



4 bit up down counter VHDL source code

 library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Counter_VHDL is
port( d: in std_logic_vector(0 to 3);
Clock: in std_logic;
Load: in std_logic;
Reset: in std_logic;
Direction: in std_logic;
Output: out std_logic_vector(0 to 3) );
end Counter_VHDL;

architecture Behavioral of 
Counter_VHDL is
signal temp: std_logic_vector(0 to 3);
begin
process(Clock,Reset)
begin

if Reset='1' then
temp <= "0000";
elsif ( Clock'event and Clock='1') 
then
if Load='1' then
temp <= d;
elsif (Load='0' and Direction='0') 
then
temp <= temp + 1;
elsif (Load='0' and Direction='1') 
then
temp <= temp - 1;
end if;
end if;
end process;
Output <= temp;
end Behavioral;


